HEALTH RISKS OF BIRTH BY ASSISTED FERTILIZATION TECHNIQUES. THE TIP OF THE ICEBERG.
Content:

1. Introduction
2. Genes and environment: epigenetic mutations as one of the causes of health alterations in those generated by ART
 Epigenome and epigenetic mutations
 Influence of the medium in the processes of life transmission
 The state of the gametes: epimutations
 Fertilization
 Epimutations for the culture of the embryo
 The freezing/thawing of the embryos and their posterior transfer
3. Comparative systematic health studies according to how one was conceived
 Multiple births
 Low birth weight in relation to gestational age
 Cerebral paralysis, epilepsy and febrile seizures
 Principal causes
4. Malformations, chromosomal alterations and sterility inheritance
 Malformations
 Chromosomal alterations
 Inheritance of the alterations that cause paternal sterility after the use of ICSI
5. Defects in the early foetus
6. Rare syndromes and risk of cancer because of epigenetic mutations
7. Epimutations in the genome originated by the use of ART that is manifested long-term and/or are transmitted to the following generations
HEALTH RISKS FOR NEWBORNS BORN BY ASSISTED FERTILISATION TECHNIQUES. THE TIP OF AN ICEBERG.

When in 1978 the first girl produced by in vitro fertilisation (IVF) was born the question unavoidably arose: Will she have the same health risks as those conceived “naturally”?

In the case of Louise Brown there were no reasons to fear that she would suffer any problem as a consequence of her parents’ sterility, whose gametes- ova and spermatozoa- were not defective. It was simply an obstruction of the mother’s Fallopian tubes. It was not a multiple pregnancy, nor was she cultured or frozen in her embryonic stage, but was soon transferred into her mother’s uterus.

Nonetheless, from that moment on the Medical Research Council began to compare the data of the first year of life of those born by IVF during 10 years with respect to those born in the same period of time and had been engendered naturally. Already then, a lack of health was found in those engendered by IVF.

The question of the lack of health in the children born by assisted reproduction techniques (ART) has been very controversial. The first comparative studies focused on the differences, in some type of alteration- prematurity, malformations, chromosomal alterations, etc.-, according to the mode that they had been conceived. The size of the samples was insufficient for a thorough statistical analysis, given the variety of characteristics with regard to the cause of sterility in the progenitors, as the type of technique used, or that they were subjected or not to the freezing of gametes of the embryo itself. It also varied according to the type of resulting pregnancy-multiple or single- mother’s age, etc. The case study children, of the same age, geographic area, ethnic group etc., also had varied characteristics.

Around the years 2003 and 2005 meta-analysis was carried out, that gathered data from numerous studies and showed an increase in risk because of the growing implementation of the techniques, and a tenuous debate began on what could be the causes. The different studies gave an increase in risk of those born by the implementation of the techniques, which sometimes resulted as statistically significant and other times did not. Some do not show any difference and in some cases apparently even have less risk for the health of those born. The reality of that better health proved to be otherwise: when the embryos were frozen and afterwards thawed, they were only able to be implanted in the uterus, developed and be born those that were stronger, less damaged and therefore capable of resisting the process.

During many years it has been debated whether health problems, evidently greater in children generated by ART, are due to the condition of the gametes of the parents or to

the techniques. The gathering of data is complicated with the donation of gametes when
the cause of infertility is due to male factor or to the female's advanced age.

The growing propaganda of the use of gametes donated by others apart from the couple
is made under a false supposition: the ART are very efficient and safe, the problem for
the child will be the infertility subjacent of those that, precisely because of it, resort to
assisted reproduction centres, to have a child.

It is a fallacy the disjunctive of posing if “the fault” is of the parents with problems in
reproductive health. ART are born precisely to break down the barriers of sterility and,
therefore, is based on the existence of a problem. The clinical practice of ART is
designed to supple the natural inefficiency of those who suffer some form of infertility
or sterility, which means the fertilization potential of the gametes has to be artificially
forced, fertilized and the embryo maintained outside of its natural context, during a few
days.

With time, the proliferation of studies with ample samples and adequate controls, allows
for a good statistical treatment of the data, has dismissed doubts concerning the inherent
negative effects of ART. At the same time, it is confirmed that so much the state of the
gametes as the techniques used in artificial reproduction cause disorders in the
offspring, with a different turnout according to the type of disorder.

A typical cycle of ART begins with ovary stimulation, usually hormonal, even when the
fertilization is going to be natural or by insemination. In the case of IVF, after the
stimulation the gathering in the ovarian follicles of the oocytes takes place and
frequently they are induced to mature in vitro. The gametes are then co-incubated in a
culture medium during some hours (IVF), or one sole sperm is injected directly in the
oocyte in the culture to help the fertilization (ICSI). The resulting embryo is cultivated
during two or three days until a 6-8 cell embryo is formed, or during several days more,
until the blastocyst stage is reached (70-100 cells) before proceeding on to the
implantation in the mother's uterus. This transfer takes place then or after a period of
conservation in cold and prior thawing, that has to be accompanied by a reanimation of
the embryo.

These “in vitro” events occur during the most critical period in the development of the
nascent embryo, around its nesting period. The change in its natural medium-the
mother's body-by the different mediums of the techniques, are not indifferent neither for
the oocyte nor for the embryo. For many years, the Biology of development has shown
that different gene expression is dependent on the medium in which the cells are, with
respect to its position in relation with the cells that they interact with, the molecular
signals they receive and the environment the organism lives in, be it the maternal body
or the external conditions where it lives after its birth.

It is important to have in mind this fact: the medium modifies the state of the genetic
material, regulating in this way -epigenetically- the genetic expression. Logically, it is
important that the techniques-with its changes in the environment and situation are

4 Thompson, J.R., Williams, C.J. “Genomic imprinting and assisted reproductive technology: connections
The quality of the ovules depends on the mother’s age as comparative studies show between women of the same age that conceive naturally or with the help of ART. A factor to have in mind is the infertility index that increases with age and since the age of the majority of women who resort to IVF has incremented in the last few years, makes the ART practice riskier. On the other hand, a series of environmental toxics, endocrine interruptors, have reduced masculine fertility by causing DNA mutations or in the same zones that regulate some specific gene expression known as epigenetic mutations.

The techniques play down the environment from the in vitro embryo: the “molecular dialogue” that is established since the beginning of fertilization between the gametes, that gives its origin and subsequently the “molecular dialogue” of the embryo with the mother while it travels through the tubes and between both prepare the nesting in the mother’s uterus, inducing the immunological tolerance of the mother towards the foetus. The development of the conditions of the culture of the embryos in the laboratory, and in the case of freezing, by far that the experience has been perfected afterwards, does not substitute the specific natural environment, and the only one that avoids the vulnerability of the early embryo.

The reasonable hypothesis was raised that infertility treatments the more invasive they were the more health problems they would cause so much so in mothers as in their offspring.

a) Ovary stimulation is a habitual process, since it is necessary to provide for a greater number of ovules than those that mature in a menstrual cycle. Therefore, if the ovules are normal as if they have a defect-for example, by ageing -they are collected immaturely and in a greater number than normal, and they are forced to mature in an in vitro culture before being fertilized. The in vitro maturation of the ovules outside the ovaries, that is its niche, is a negative factor by the change in the DNA state following the instructions of the medium.

b) Intrauterine insemination involves as many risks for the offspring as IVF/ICSI. It requires ovarian stimulation of the woman and has a cause when the infertility is not explained, or when it is for diverse causes of male infertility. Both gametes can be engaged; in fact, the results in terms of pregnancy or of birth, are better when the semen of an external donor is used than when the semen of the partner is used. Insemination is not a substitute for IVF.

The level of the prevalence of congenital abnormalities in Europe\(^8\) show that the potential risk associated to insemination should not be ignored and this information should be transmitted not only to those responsible for carrying it out but also to the couples that wish to be treated.

c) ISCI is more prejudicial than the conventional IVF\(^9\). The forced fertilization of an ovary (IVF), more so if its by the direct injection of only one sperm into the cytoplasm (ICSI) has shown an elevated risk for the offspring, since the fertility incapability of sperm is usually due to genetic causes, associated to Y chromosome alterations or due to induced mutations by environmental toxics. This risk is then passed on to the following generations.

d) The tendency in the last few years has been an increase in ICSI use and of embryo transfer of those frozen or thawed\(^10\). Independently of the state of the ovule, in ISCI - especially indicated when the sterility of the couple is because of a male factor- the congenital malformations of those born. The freezing of the embryo acts as an embryonic selection, so much so because only the most fitted survive the thawing as because the uterus recuperates with time from the alterations due to ovarian stimulation and facilitates the nesting of the transferred embryo.

On the other hand, it is well-known that the proportion of those born alive has not increased, in the more than thirty years in spite of technology having been perfected, seeing the results that are obtained year after year in terms of an achieved pregnancy or of a born baby. Only approximately 15\% to 30\% of the embryos generated by these techniques\(^11\) survive.

e) We lack reliable information about the added risks in the future of those born generated *in vitro* by ICSI and subject to a biopsy for the genetic diagnosis prior to implantation\(^12\). The current situation, in as much as it refers to the errors in analysis, as with perinatal deaths, should be looked from the perspective that this diagnosis does not have any therapeutic function for the analysed embryos but that it deals with a system of selection that chooses the embryos that are transferred by virtue of their characteristics.

f) Some of the health problems of those born by ART are linked with the fact, showing in a consistent manner, multiple births, low birth weight and prematurity. These situations frequently involve lack of health in the long term.

On different occasions, pediatricians and obstetricians have offered to collaborate with Assisted Reproduction centres and to broaden the neurological development analysis of the children, growth, maturing process in puberty, fertility, etc., in the long term. Some illnesses appear later on and can not be detected until those born reach a certain age. They also try to be able to differentiate the health risk, according to the techniques used and the sterility diagnosis of the parents. Nevertheless, the repeated alarm on behalf of pediatricians and neonatologists, the key questions still have not been made or have rather been ignored.

Can the exposure to an in vitro environment, different from the natural one, of the gametes and/or embryo, alter the development of the organs and tissues?

Are we at the tip of an iceberg and can following generations be affected?

The diagnosis of the causes of sterility is essential but it has been investigated very little and is not known in many cases. It is indispensable to be able to move forward in that investigation to be able to determine a clear indication to use different procedures of ART, in order to minimize the risks related to its invasive character13.

It has to be kept in mind that the implementation of these techniques has risks, and that this is not a process directed at curing sterility. Therefore, there exists from the start a scientific objection to the implementation of a technology without guarantees, and in some cases, possibly, unnecessary and inefficient.

We know with certainty that the risk is real. The paper published in The New England Journal of Medicine with a study of more than 300,000 children, of which 6,136 had been generated by ART, puts forth that the risk of being born with some type of defect is greater (8.3\%) with whichever of the ART techniques than when they are engendered naturally (5.8\%). Significant differences exist according to the ART used; with IVF it was 7.2\% while 9.9\% was reached with ICSI14.

Also in 2012 it was clearly demonstrated that the ones born after the use of IVF/ICSI have a higher risk of suffering perinatal complications in comparison with those spontaneously engendered. And the urgency to determine what aspect of the techniques causes more risks and how they could be minimized15 is posed.

The implementation of ART generates rare syndromes and recent cases have appeared that show alterations that have not yet been quantified16.

We know that there are alterations that appear in the long term, such as the systemic pulmonary and cardiovascular disease, caused by the exposure of the embryo in the first few days- when it is especially vulnerable-, in an adverse environment and to ovarian stimulation17.

All this tells us that even after more than 30 years of retrospective investigation ART is still not sufficiently controlled.

The reasons are very, very clear: since sterility can not be cured the child can suffer the consequences of the deficiencies of their parents’ gametes. But even in the cases where the gametes are not defective as occurs with those that came from donors, the implementation of the techniques causes excessive deficiencies.

Obviously, we neither ignore nor take away importance from the problem of the great quantity of embryos that die in each cycle of IVF, nor of the certainty in the fact that an embryo is in \textit{in vitro} and not in the mother's womb does not change the intrinsic nature of all human embryos. \textit{In vitro or in vivo} are human. Also, what is not ignored is the indescribable joy that millions of born children have supposed in the world, during more than 30 years, of parents with sterility problems.

For many years, the majority of scientific publications on the risks for the children dwell on the obligation of informing those that resort to infertility aid, in a thorough and complete manner, of the diagnosis, possibilities and precise risks.

If how it begins to be thought of, and preoccupy, we can only be at the tip of a great iceberg, a rational public debate should take place that revises the ample legislative permissiveness and that perhaps puts forth the convenience of setting up adequate controls to the ART centres on the use of techniques.

We will describe here one of the grave problems that the use of ART brings about: the higher risk of suffering illnesses and malformations by the children generated by ART with respect to those engendered, that today is undeniable. Data that must be available to all who turn to them, available to society and that necessarily have to be taken into account by the National Commissions so much so of Bioethics as of ART control.

HEALTH RISKS OF BIRTH BY ASSISTED FERTILIZATION TECHNIQUES. TIP OF THE ICEBERG.

Summary

Assisted Reproduction Techniques (ART)- Ovarian stimulation, intrauterine insemination (IUI) or In Vitro Fertilization (IVF)/Intracytoplasmic injection of sperm (ICSI)- have made possible the birth of hundreds of child, and many of them are entering adulthood. In the early 90's began a pediatric alert for defects and anomalies presented by these children, a higher proportion than those born naturally. Their health is unquestionably worse since 2002. Techniques used are extremely aggressive; the loss of embryos before implantation, spontaneous abortions and perinatal mortality is very high- Essential animal experimentation have not been carried out: and tests with fertile animals have shown that the offspring generated in vitro presented serious alterations.

However, damages observed were simply ascribed almost entirely to the advanced age of women using these techniques, and sterility to genetic alterations of the sperm, increasing by environmental contamination. Extensive direct human experimentation has been carried out, but without observing the minimum requirements of human experimentation: ignoring the role of the techniques themselves, and how they cause defects in a number of children thus generated, or what they might transmit to future generations. This is not a question of risk/benefit regarding a health problem. The ART are not interventions to solve a physical or physiological vital problem. The proportionality between the satisfaction of the desire for maternity/paternity and risks to the child's health should be a primary criterion, although not the only one.

Key words: assisted reproduction techniques, health of newborns, intergenerational problem, genome and epigenome, epimutations.

1. Introduction

The biology of the transmission of life has moved forward in a spectacular way in the last decades: hereditary alterations are not only due to defects in mutated genes in inherited genetic material. The forming and maturing of the ova or of the spermatozoa, the same fertilization, the first steps in embryonic life and in definite all of the life of each individual, modifies the state of the genetic material in a manner dependent of the medium. The regulation of what genetic information is expressed and which is silenced in each moment depends on the state of the genome in time and in corporal space.

The substitution, necessary when ART is used, of the environment by the means of in vitro can cause mutations at this level of regulation -epimutations- that can add up with the possible alterations, which on their own or by technical manipulation that the gametes of the progenitors can have.

A concatenation of causes brings about the fact that the health of those who are born by the use of ART will be worse than those born engendered. Moreover, some of the DNA epimutations can be passed on to the following generations.

The knowledge that the gene expression is epigenetically regulated that is to say that with the same process of development, and in a dependent form with the conditions of
the medium, it should not have been ignored. For many it has fortunately been a special preoccupation\(^\text{18}\) although it has systematically been unheeded by the centres that carry out ART and is a call for thoroughness in research.

We will begin with a brief description in the close relationship genes-environment in the transmission of life and during the first stages of unborn life.

2. **Genes and environment: epigenetic mutations as one of the causes of health alterations in those generated by ART**

2.1 **Epigenome and epigenetic mutations**

Since the 60s it begins to appear that DNA is not the only deposit for information. On the contrary, there are two levels of information in the inherited chromosomes: the sequence of bases in DNA, the *genome*, and a second deposit that is known as the *epigenome* that carries out the regulated gene expression.

The term “epigenetic” was introduced for the first time in 1940 by Conrad Waddington\(^\text{19}\) to describe the DNA modifications that permit regulating the gene expression without altering the base sequence and in function of the components of its interior or exterior medium. Therefore, as the genome- the sequence of the DNA base - does not change in none of the organism’s cells nor throughout its life, the epigenome - that resides in chemical and structural changes of DNA- is in continuous change throughout life, to the beat of the interaction with the changing medium. It determines the state of development of the organism and of the diverse cells that constitute the organs, the tissues and systems of that organism. The most known changes are DNA methylation, the modification of the histone proteins and RNA expression in small quantity. Although in this paper we fundamentally refer to the changes in methylation, it is important to point out that the appearance and disappearance of RNA of small quantity plays an essential role as a regulator in the great epigenetic changes in the processes of life transmission and in the beginning of the development\(^\text{20}\).

These changes permit DNA sequence to be accessible or to be blocked that signal the start of a new gene\(^\text{21}\) by which it expresses or is silenced. Without this information, that is created step by step and controlling gene expression, there would not be embryonic development, maturation or natural ageing.

Epigenetic mutations instead of genetic mutations are what alterations in the markings of DNA are called -methylation pattern and RNA union- that affect the regulation of gene expression. This regulation dependent on the medium fundamentally takes place during gamete formation, fertilization and in the first stages of embryonic development. So the changes in the medium generate alterations in embryonic development and these alterations can be transmitted onto the next generation. Epigenetic mutations are at the base of many diseases22, especially in the processes of reproduction23.

2.2 Influence of the medium in the processes of life transmission

The characteristic pattern of spermatozoa and of the ova that is known as parental imprinting, logically is inherited as a specific state of the genetic material of the gametes from those that are constituted in the fertilization of the new individual. The epigenome of the ova and of the spermatozoa has to rapidly change during the fertilization process so that the epigenome of the zygote is in situation to begin to develop. It is then, that each zygote begins to develop, \textit{in vivo} or \textit{in vitro}, with a genome and a brand new epigenome, and is renovated with fertilization24.

This requires that the imprinting of the paternal and maternal chromosomes suffer an \textit{epigenetic reprogramming} during the time that the fertilization process lasts.

Once the zygote is constituted and in the 5 or 6 days of embryonic development, before nesting begins, the majority of the marks are erased, with a rhythm and a different pattern, of the paternal and maternal genetic inheritance. At the same time other new ones are established that create the epigenome of a new individual, with a specific imprinting of each organ and tissue25, therefore permitting the gene expression necessary for full development.

Only in one series of genes, denounced \textit{genes with imprinting} does not change the regulatory markings during this wave of changes that take place during fertilization. Therefore, each copy stores the paternal or maternal parental imprinting, specifically regulates the expression of those genes: one copy is expressed and the other is silenced. These genes with imprinting26 play a fundamental regulatory role in the first stages of embryonic development.

22 Petronis A. “Epigenetics as a unifying principle in the aetiology of complex traits and diseases”. \textit{Nature} 465, 2010, 721-727.
26 Weaver, J.R., Susiarjo, M., Bartolomei, M.S. “Imprinting and epigenetic changes in the early embryo”. \textit{Mammalian Genome} 20, 2009, 532-543.
2.3 The state of the gametes: epimutations

The genesis and maturity of the gametes is a process with an enormous precision that requires as a natural niche of the masculine or female body. Of its states depends a stable differentiation during the embryonic development after its mutual fertilization. The epigenome of the sperm is established early at the beginning of the process of genesis and the maturation of the sperm, before it can be altered by the ART processes. Because of this, the largest part of the causes of masculine sterility is due to existing defects in the genome or in the epigenome of the sperm and therefore it is transmitted to the offspring. However, it is alarming that diverse environmental toxins cause DNA alterations of the spermatozoa, and epimutations in specific genes that are implicated in spermatogenesis. The decline of human spermatogenesis is associated with defects of the imprinting of some genes. The DNA alteration has very negative effects for the embryo generated by the ART, so it is not strange that it is raised to analyze the DNA of the sperm as a guarantee.

Little is known about the change of the imprinting in natural maturing or in vitro, of the ova but there are numerous data about how ovarian stimulation, a process common to all ART, affects imprinting. The manipulation of the ova requires ovarian stimulation, the collecting of immature oocytes and their maturing in vitro culture. If they suffer epimutations and come to be fertilized they have negative effects on the embryo. In animals, ovarian stimulation retards embryonic development, increases the abnormal

formation of the blastocyst, delays the growth and increases foetal loss34. Immature human oocytes if they do not manage a correct reprogramming \textit{in vitro}, can lead if they are forced to suffer fertilization to diseases even including the death of the embryo35.

An epimutation of the gametes that affects genes with imprinting, essential for the normal development of the early embryo, leads to growth disorders of the placenta, causes reduced intrauterine growth and it is related with various syndromes and risks of some types of cancer as we will analyse further on.

\textbf{2.4 Fertilisation}

The requirement of ovarian stimulation, with its possible alterations of parental imprinting and the alterations that the spermatozoids might have, reinforces a combination of flawed parental genotype for the complex initial development of the embryo generated artificially. During the fertilization process, the imprinting of the paternal genome changes rapidly, fundamentally by the loss of methyl groups of cytokines of DNA36. The medium in which the fertilisation takes place is important as it is in all epigenetic processes.

\textbf{2.5 Epimutations for the culture of the embryo}

Various experiments with animals has shown that the embryo \textit{in vitro} culture causes epigenetic mutations and alters the genes with imprinting37 related with growth, in a dependent form of the conditions of the medium that is employed38. In mediums with poor conditions, mice embryos, coming from ovarian stimulation, have development faults and have more pathologies of the neuromotor system and some organs were of a bigger size than in those of control study39. These effects were also observed in sheep40.

40 Gardner, D.K., Lane, M., Spitzer, A., Batt, P.A. “Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino
Generally the medium of culture contains foetal bovine serum that provides a rich environment for the development of the embryo. However, it contains active compounds, such as hormones, growth factors, that paradoxically reduce the early development potential of the embryo, causes metabolic abnormalities and abnormalities in embryonic structures. These erroneous signals provoke a gene dysregulation because of epigenetic modifications of the genome. Development programming, growth and physiology are irreversibly affected during the period prior to implanting by an inadequate in vitro culture. It has been suggested that the possibility that the methionine contained in mediums of commercial cultures for ART can be critically involved in inducing epigenetic mutations and preoccupation has been expressed because the chemical contents of such mediums are not always clearly documented by the manufacturers.

A possible mechanism of the epimutations is that the culturing of the embryos gives way to an elevated production of reactive oxygen species on behalf of the mitochondrias. These molecules alter the DNA, the normal epigenetic pattern and the posterior genetic expression of the embryo. In fact an altered expression of genes after in vitro fertilization has been described specifically in the placenta; precisely genes that are involved in the energetic metabolism, in DNA repair and in stress response. The insufficient production of energy in the placenta and in genes in the dysfunction metabolism emphasizes the vulnerability of the placenta in relationship with its surroundings.

2.6 The freezing/thawing of the embryos and their posterior transfer

It is known that after being thawed some embryos present a loss in their capacity to develop. In publications in 2009 and 2011, which summarize the results of the European ART centres, describe that the amount of embryos, on an international level, fluctuates around 430,000 per year. More than half, -around 240,000- are generated by ICSI. The number of frozen embryos- after passing an exam based on basic morphological characteristics, usually in the blastocyst stage of some 5 or 6 days-, and thawed is of 108,000. 5%, even 10% of those embryos will not be able to be transferred due to developmental alterations. Only 19.37% of all thawed embryos will have succeeded to be implanted and of those 47.40 continued the gestation and were born alive. The acids, vitamins, and culturing embryos in groups stimulate development”. Biology of Reproduction 50, 1994, 390-400.

The percentage of success of babies born does not reach 15%. Also some are born prematurely and neonatal mortality reaches 2.54%.

Some malformations and cerebral paralysis are more frequent in embryos that have undergone ART with or without freezing than those conceived by natural form. Some risks- prematurity and low birth weight, neurological consequences and other diseases- are paradoxically less frequent in those embryos born having been frozen than in fresh embryo transfer.45 However, it seems logical that it be so since freezing does not allow for defective embryos to resist thawing, be implanted in the uterus and to be born. Indeed, the microenvironment of the uterus a few days after a woman has undergone an ovarian stimulation process is toxic for embryo implantation. The mere distancing of time to preserve the embryo in the cold eliminates the adverse surroundings.

The filter of selecting embryos through its cryo-conservation is carried out in a special way in those fertilised by ICSI.46 On the one hand, it has the effect of the injection in its membranes apart from the enormous fertilization force and since the indication of using ICSI is the masculine sterility factor, the sperms can be defective.

3. Comparative systematic health studies according to how one was conceived

Until the late eighties systematic studies on the health of children born by ART did not begin to be conducted. In 199047 the Medical Research Council published studies that gathered data on the health of the first year of life of those born between 1978 to 1987; when they were compared with those conceived naturally, it showed an increase-relatively low- of serious congenital malformations.

Throughout the nineties a clear relationship was observed between the implementation of IVF and prematurity and low birth weight of the children when born. Described are hypertension, heart diseases and osteoporosis and a higher incidence of malformations.48

In the year 2002 the alarm is raised in the scientific community with the publication of Hansen’s49 article, that shows that children conceived by IVF or by ICSI had almost more than half a prevalence (8.8% versus 4.2%) of chromosomal alterations, cardiac malformations, esophageal atresia and cranial malformations during the first year of

49 Hansen, M. and cols, op. cit.9.
life, than children engendered naturally. The preoccupation for the risk of damage in those born with the use of ART is not hidden50 it begins to be significant and in fact has been confirmed with the passage of time.

Various revisions and meta-analysis gather numerous data, put forth the diverse types of risks and highlight the possible causes throughout the years until 200551.

As it reasonable to expect, the data is dependent on the type of damage that is examined, on the number of children, of the variables, that are taken into account or not-such as the mother's age, cause of infertility, etc.-, as well as those conceived by ART, as those naturally engendered control study groups. It is not surprisingly, therefore, that some articles do not find significant differences between those that are studies and the control study groups.

In Annex 1 there is a list of the scientific publications of the analysis conducted. Of some of the articles, commentaries are not made in the text. We will go on to continue the diverse types of risks and, in a manner that can be deduced by the information published, what is the cause or causes.

\textbf{3.1 Multiple births}

It is evident that ART techniques increase multiple births52. The reiterated international recommendation is to avoid these pregnancies, reducing ovarian stimulation and transferring only one embryo, but this has gone unheeded during a long time. Multiple births bring about higher rates of morbi-mortality during the perinatal period and disability in the long term53. In a follow up study during twenty years the negative effect

is confirmed54. Also ART twins require more medical care than those conceived naturally55.

Multiple births have decreased considerably in the last years, since fewer embryos are transferred. Until 1992 the increase of twins approximately reached 30\% of the births and reduced approximately around 5\% in 2010 and is practically now null the birth of more than two56. It is important, in respect, that the transfer of only one fresh embryo has shown the same percentages of success than the simultaneous transfer of two embryos57. This is a question dependent on the quality of the centres, as women with a higher social-economic status show that since they have a more thorough follow-up and more perinatal care, generally they have less twins and better perinatal results58.

Notwithstanding, there also exists risks for the health of singletons and, in fact, congenital malformations have not diminished59. And, in 1992, a clear alarm was raised when singleton children born through IVF/ICSI had a higher risk of perinatal complications than those conceived spontaneously60.

3.2 \textit{Low birth weight in relation to gestational age}

60 Cit en 15.
Another negative effect on health is the low birth weight that happens with more frequency with the use of ART than with those engendered naturally, be it those born of single pregnancies as with multiple births and with diverse ART. Low birth weight generates hypertension that affects neurological development.

3.3 Cerebral paralysis, epilepsy and febrile seizures

Cerebral paralysis is a permanent disorder, and not progressive, that affects psychomotor development, occasioning important limitations in the activity as a consequence of the complications in the brain development of the foetus. Diverse studies since 2006 have asserted that the children born from IVF/ICSI have more of a risk of suffering from it; apart from presenting a higher incidence in mental retardation and the severe ocular dysfunction associated with this disease, as well as autism spectrum disorders.

Children of sub-fertile couples, with hormonal treatment of a year, have a higher risk of epilepsy and febrile seizures than those that have had less than five months of treatment and those that have been conceived spontaneously.

3.4 Principal causes

These risks seem to be related principally to the treatment for ovarian activation and the maturing of the oocytes so much so in those that arise from multiple births as is the case

of singletons66; epimutations of some genes with imprinting affect growth by action on the placenta67.

Some gene epimutations with imprinting that require using only the paternal copy in the sperm, could also be related with the low birth weight of children conceived by ICSI.

The data on the effects of ovarian stimulation can be understated, since it is known there are births from mothers that use it without going to the centres. It is estimated68 that 4.6\% of the children born in the United States in 2005 were conceived after this stimulation and this is an important group that has had no follow-up.

4. Malformations, chromosomal alterations and sterility inheritance

It has been confirmed that the highest risk of birth defects, in singletons as in those that come from multiple births, are in those conceived by ART in comparison with those conceived without treatment.

4.1 Malformations

Numerous articles refer to an increase in congenital malformations in children generated by \textit{in vitro} with those that have been engendered69. The risk of suffering a malformation

is different according to the type of ART used: the risk factor is 9.85 for gastrointestinal ones, 2.30 for the cardiovascular and 1.54 for musculoskeletal defects.70

Muscular genital tract malformations have been described that are associated to paternal masculine sterility and, that were generated by ICSI; the risk is greater than the 5% against less than 1% of those engendered71. The risk of this type can be related with low sperm quality.

Other alterations described are the abnormal vascularisation of the retina72 and heart anomalies73.

\subsection*{4.2 Chromosomal alterations}

It is known that in up to 60% of spontaneous miscarriages the foetus presents chromosomal alterations incompatible with life, and frequently of trisomies or loss of chromosomes. Spontaneous miscarriages with chromosomal abnormalities are higher in those generated by ART than those conceived naturally74; it is of interest that the losses of sexual chromosomes are greater (11.69%) in the group of those generated by ICSI than in the control group (6.45%) and of those generated by conventional IVF (3.23%). Of those generated by ICSI, in 55.71% the cause of infertility was due to the male factor. Similar results were obtained when comparing a total of 277 spontaneous miscarriages where the foetuses were generated with the use of ART. They have 63.2% of chromosomal alterations coming from those of conventional IVF and 71.5% of those engendered after ovarian stimulation treatment, 80% when the ICSI was a direct extraction of the sperm from the testicles and 85.7% after uterine insemination75.

\begin{thebibliography}{99}
\end{thebibliography}
ICSI treatment carries three times more risk for abnormalities in chromosomes than those conceived naturally76. The data is congruent: when fertilization is forced with a direct injection to the ova of a spermatozoid as in cases of masculine sub-fertility, it normally comes with alterations of the genetic material.

It is known that apart from the alterations, fundamentally inherited from the paternal gametes, there exists risks of generating some new chromosomal abnormality, not present in the gametes; supposedly 1.6 \% for those generated by ICSI against 0.5\% of those naturally conceived77. These foetal alterations \textit{de novo} fundamentally consist in an increase in the number of sexual chromosomes, can cause sterility and its phenotype manifestation is undetectable at birth and in the first few years of life. They can be originated by the culture of the embryo78.

The chromosomal alterations of the child can also be due to the mother's advanced age that is obviously accompanied by oocyte alterations and is manifested in chromosomal aberrations. These alterations are greater after ISCI with respect to conventional IVF, even if the mother is young79.

In the past few years, the \textit{in vitro} maturation of the oocytes obtained from ovarian stimulation has begun to be a routine step of ART. It has been observed that this process does not increase the risk of congenital alterations with respect to those born by being conceived naturally80, except when female sterility is due to a polycystic ovary. In this case, the maturing of the ova \textit{in vitro} carries a high level of embryonic loss if it is either generated by IVF as with ICSI81.

\textit{4.3 Inheritance of the alterations that cause paternal sterility, after the use of ICSI}

The possibility of inheriting paternal sterility when the ICSI technique has been used seems to be related with the underlying infertility82; in fact there exists a strong

\begin{footnotesize}
\begin{itemize}
\item 76 Marjoribanks, J., Farquhar, C., Marshall, C. “Systematic review of the health risks to the mother, child and family associated with the use of intracytoplasmic sperm injection (ICSI)”. \textit{Report to the Ministry of Health from the New Zealand Guidelines Group undertaken by the Cochrane Menstrual Disorders and Subfertility, New Zealand}, 90 pp., 2005.
\end{itemize}
\end{footnotesize}
correlation between the chromosomal constitution of the embryo and the paternal infertility due to chromosomal alterations.

Part of male infertility is associated to alterations in the Y chromosome that the male children obviously inherit. Actually it is possible to dissect the genes of chromosome Y which allows for a better diagnosis of the cause of infertility and, with the diagnosis, thorough information could be given to those that resort to ICSI and they could then take into account the expected malformations in their children.

Another of the causes of sterility that refers to the no production of spermatazoids - azoospermia- low or moderate production -oligozoospermia- and that have required ICSI to conceive had some chromosomal reorganization. The frequency of the three mentioned types was of 18.71%, 14.55%, and 2.37% respectively.

Thirdly, 6% of sterile men have a karyotype with anomalies of the type of trisomies -three instead of two- of the sexual chromosomes, less frequent. For example, Klinefelter Syndrome, which occurs in 1 of 500 males, affects 14% of the men with non-obstructive azoospermia. In other cases, it deals with chromosomal reorganizations, changes of places of the genes, inversions in some regions of DNA, or loss of zones. The ART cause that the offspring be passed on with genetic diseases.

It has been confirmed that genetic mutations that cause cystic fibrosis and follow with the absence of vas deferens, is transmitted to children generated by ART.

Epigenetic alterations have also been described in sperm with low motility and also intrinsic errors in the imprinting in the sperm of men with normal sperm production.

In types of female infertility that affects genes with imprinting it can be transmitted to children when the ART exceeds the fertilization selection barrier89.

On the other hand, alterations have been described of the sexual hormones in those generated by ICSI whose consequences in the present and for future generations do not stop from being alarming90.

It is imperative to carry out a thorough analysis of the causes of male sterility for those that resort to ART implementation; and it is necessary to advise against it in the case of any type of alteration not only in the chromosomes but also in the DNA state, that must correspond to the maturing situation.

5.

Defects in the early foetus

Congenital defects classified as “blastogenesis defects” take place in the first four weeks of embryo development. It happens at the beginning of the formation of the diverse organs and therefore, tends to affect the formation of specific zones of the foetus that is developing in those moments. It originates defects in the neural tube, in the stomach wall, esophageal atresia and anal atresia and is more frequent in embryos generated by ART, so much so in singletons as in twins91. They are serious and many of the spontaneous miscarriages have this type of malformation. They do not have a genetic cause and are more frequent in those born after the use of IVF and ICSI92. They are present in 1 of every 160 pregnancies of ART in comparison to 1 for every 400 in control case studies which pose that they are due to the changes in the natural surroundings by the environment in which the ART embryo is developing in.

So much so the exposures related with ovarian stimulation, oocyte collection and the culture of embryos has probabilities of influencing in the early development of the embryo93 and in its implantation. Ovarian stimulation treatment involves having a lower level of endometrial protein in pregnancy, PAPP-A, that plays a key role in the formation of blood vessels and in placenta formation during the first weeks of

pregnancy. It is also relevant in that this protein is used in the diagnosis of Down’s Syndrome in foetus giving way to false-positive results\(^{94}\).

Another negative effect of the implementation of ART in the early development of the embryo is the fact that they make the control of imprinting gene expression be lost, which is essential in this stage. As it has been commented, the cause of the loss of control of these genes can be multiple\(^{95}\).

6. Rare Syndromes and risk of cancer because of epigenetic mutations

Some syndromes exist, related with aberrant expression of imprinting genes, very infrequent in the general population and that, however, have frequently been found in children born using assisted reproductive techniques.

a) **Beckwith-Wiedemann Syndrome** is characterized by premature birth, an abnormally long tongue, umbilical hernia, neonatal hypoglucemia and a predisposition for tumours\(^{96}\) and a higher frequency for Wilms’ tumour, a rare tumour that affects one in every 36,000 births\(^{97}\). There exists a clear association between Beckwith-Wiedemann Syndrome and patients conceived by ART\(^{98}\).

90% of children with Beckwith-Wiedemann, born by the use of ART, have specific imprinting defects, consistent in the loss of epigenetic marks in the KvDMR region inside the KCNQ1- of the maternal copy of chromosome 1199. This same change in the imprinting is shared with 40-50% of those who suffer the syndrome and had been engendered naturally.100 In those conceived by ART there seems to be other epimutations one of them tied to ICSI101 and any of them can affect the regulation of specific genes.

A known example would be the gene with the imprinting, Igf2r -the receptor of the growth factor derived from insulin-that is directly related with excessive growth and that in sheep generated by \textit{in vitro} has been related with a modification consisting of methylation loss102.

b) Patients with Angelman Syndrome have loss or alterations in the methylation pattern. In this case, in chromosome 15, in the region SNRPN, also in the maternal copy, what it suggests, as in the prior case, is that the epigenetic mutation is related with a greater vulnerability of the oocyte obtained from the stimulated ovary and matured \textit{in vitro}. In fact, SNRPN imprinting of the maternal copy is established in fertilization or even later on103.

Angelman Syndrome is characterized by severe mental retardation, speech deterioration, equilibrium disorder and “happy and nervous disorder” behaviour; it also includes excessive prenatal growth and defects in the abdominal wall. The frequency is approximately one in every 10,000 to 30,000 of the population. It is linked with ART, especially with the implementation of ICSI in sub-fertile couples; although, it is evident that ICSI per se is not the principle determinant of the association observed between ART and imprinting disorders but more so because of ovarian stimulation.

c) Other rare syndromes have been associated with ART especially in ICSI twins: Goldenhar, and Rubenstein-Taybi, and Meckel-Gruber and mental retardation.

d) A single article—that has not been confirmed—shows a greater risk of suffering the infantile tumour retinoblastoma in children born by IVF; a tumour not so frequent that appears in one child for each 17,000. A meta-analysis has detected an increase in the risk for cancer in children generated by ART.

e) An increase in neurological after-effects has been described, such as mental retardation and serious vision defects. The preoccupation for consequences in the long term by the use of ART, such as neurological developmental problems, raises the issue that makes the investigators pay more attention.

f) As what was to be expected, those gestated alone have less risks of imprinting alterations as well as other problems than twins or triplets.

7. Epimutations in the genome originated by the use of ART that is manifested long-term and/or are transmitted to the following generations

There are health problems that appear in the long term. Consequently they are not detectable by the systematic studies that analyse health at birth or at short term of the life of those born. Some early defects prevail throughout life such as asthma or allergic diseases. And actually there is evidence that epigenetic mutations in those born by ART generate alterations in the long run.

It is important to point out that epimutations can be inherited from the gametes or can be generated de novo in the first stages of embryonic development. Epimutation is generated in the processes of life transmission, although the corresponding defect will appear in the short or long term. The association between environmental influences and disorders in the origins of each individual is well established.

In fact, in the differentiated cells of the organism, epigenetic reprogramming is very reduced and generally stable: 80% of the places of methylation remain methylated. The effect of the possible epimutation can appear later on and, thus, affect the function of the corresponding organ that is not transmitted to the following generation unlike epimutations of germlike cells that can be transmitted, although the individual in which it has been generated has normal characteristics or phenotype.

7.1 Cardiovascular problems due to ART implementation.

Studies on mice have documented that the ART technologies, especially the culture medium, alter the methylation patterns and with it gene expression, associating it with vascular dysfunction and hypertension in offspring.

Beforehand, it has been described that this alteration can be directly linked to several factors118. In 2010 it became known that there is three times more risk of congenital heart defects, in the long term of those generated by INF/ICSI with respect to those naturally conceived119; the type of controls and variables used in this paper suggest that this problem is not related with factors of the parents but with the techniques themselves. However, in 2012 not only the risk was confirmed, in the long term for cardiovascular disease but also that the cause is the exposure of the \textit{in vitro} embryo to an adverse environment120. They prove the incidence in children between the ages of 8 to 18 years old conceived by IVF techniques with generalized vascular dysfunction by the structural and functional characteristics that are linked to a higher risk of cardiovascular occurrences at adult age. For this, they have taken as a case-control study 65 youths that were generated \textit{in vitro}, their brothers that were naturally conceived and also others engendered after the mother had ovarian stimulation treatment, vital for \textit{in vitro} fertilization.

\textbf{7.2 Other epimutations}

Recent studies suggest that changes, almost inestimable of the methylation pattern, can be produced in whatever place of the genome, in those generated by ART and be passed

on to the offspring121, apart from imprinting gene epimutations122 and selective loss of methylation123.

Several studies show that, sometimes, adverse conditions in prenatal life can later on be linked with the development of chronic diseases in adulthood124. For example, it has been described that the offspring of parents exposed to famine in the conception stage, show altered genes with imprinting as the growth factor derived from insulin125.

Gene epimutations, after ART, has been associated to cardiovascular and metabolic alterations and could have future implications: changes in blood pressure, increase in the triglycerides, in fasting high glucose, an increase in the fat tissue and the increase in the incidence of the primary sub-clinical hypothyroidism. Adolescent girls conceived by IVF have hormonal imbalances126. These changes can result in a predisposition for illnesses such as diabetes type II, obesity and cardiovascular disease127.

127 Wadhwa, P.D., Buss, C., Entringer, S., Swanson, J.M. “Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms”. Seminars in Reproductive
8. Concluding

The information dealing with the frequency of malformations, chromosomal alterations, rare syndromes and a large etc., short and long term, in those born with the intervention of some of the processes included in the so-called Assisted Reproduction Techniques, are a call for attention, that demands a responsibility on behalf of the professionals and of the damage control systems. It requires an urgent and careful investigation of the health of those already born and detailed information to those that turn to ART as well as to society.

The implementation of whatever assisted reproduction technique first demands a thorough diagnosis on the sterility or infertility of the couple. The health risks on the offspring depend only partially on the quality of the gametes. In other cases the techniques are the sole causes of the alterations.

The masculine factor is mainly of genetic origin both by gene mutations as by epimutations. These alterations pass on to the offspring when the fertilization is forced by the injection of a spermatozoid into the cytoplasm of an ovum (ICSI). This technique is more invasive and the one that greater disorder originates so much so in the short term as in the long term and causes a grave intergenerational problem. ICSI should be advised against, even denied, if the diagnosis of masculine infertility is genetic. However, it is the most used not only in the case of infertility but also by indication of the protocol when a genetic diagnosis will be carried out before embryo implantation.

The risk of one of the techniques is greater the more invasive they are. Elevated is the number of epigenetic alterations (regulatory of the natural expression of the embryo’s genome) that result from the exposure to an artificial environment so much so from the oocytes obtained by ovarian stimulation, as the culture medium of the fertilized ova, or the freezing-thawing and resuscitation of the embryo prior to implantation in the maternal uterus.

All this as has been reviewed beforehand has direct consequences in the short, medium and long term in the life of an individual generated by the techniques. Even when they are hereditary they can cause an intergenerational problem.

Available Bibliography online

Published articles on the risks of children generated by ART

Freeman, T., Golombok, S., Olivennes, F., Ramogida, C., Rust, J. “Psychological assessment of mothers and their assisted reproduction triplets at age 3 years”. *Reproductive Medicine Online* 15, 2007, 13–17.

Klemetti, R., et al. “Children born after assisted fertilization have an increased rate of major congenital anomalies”. Fertility and Sterility 84, 2005, 1300–1307.

Kurinczuk, J.J. “Safety issues in assisted reproduction technology - From theory to reality - just what are the data telling us about ICSI offspring health and future fertility and should we be concerned?” *Human Reproduction* 18(5), 2003, 925-931.

Milki, A.A. “Rate of aneuploidy in miscarriages following in vitro fertilization and intracytoplasmic sperm injection”. Fertility and Sterility 81(5), 2004, 1270-1272.

